你好,欢迎来到秒速赛车!

在线留言| 企业简介| 联系我们

12
资讯浏览
当前位置:秒速赛车官网 >> 资讯浏览
氯离子防腐机理及防护
发布日期:2019-3-5 浏览次数: 45次
一、氯离子对不锈钢腐蚀的机理
氯离子对不锈钢腐蚀的机理:在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr和Ni是不锈钢获得耐腐蚀性能最主要的合金元素。Cr和Ni使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。 氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为2种观点。 成相膜理论的观点认为,由于氯离子半径。┩改芰η,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。 吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样导致了腐蚀的加速。 电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力
二、应力腐蚀失效及防护措施
1、应力腐蚀失效机理
在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45%左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。应力腐蚀一般都是在特定条件下产生:
①有在拉应力的作用下。
②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4、H2S溶液中才容易发生应力腐蚀。
③一般在合金、碳钢中易发生应力腐蚀。研究表明,应力腐蚀裂纹的产生主要与氯离子的浓度和温度有关。
2、压力容器的应力来源:
①外载荷引起的容器外表面的拉应力。
②压力容器在制造过程中产生的各种残余应力,如装配过程中产生的装配残余应力,制造过程中产生的焊接残余应力。
在化工生产中,压力容器所接触的介质是多种多样的,很多介质中含有氯离子,在这些条件下,压力容器就发生应力腐蚀失效。铬镍不锈钢在含有氧的氯离子的水溶液中,首先在金属表面形成了一层氧化膜,它阻止了腐蚀的进行,使不锈钢钝化。由于压力容器本身的拉应力和保护膜增厚带来的附加应力,使局部地区的保护膜破裂,破裂处的基体金属直接暴露在腐蚀介质中,该处的电极电位比保护膜完整的部分低,形成了微电池的阳极,产生阳极溶解。因为阳极小、阴极大,所以阳极溶解速度很大,腐蚀到一定程度后,又形成新的保护膜,但在拉应力的作用下又可重新破坏,发生新的阳极溶解。在这种保护膜反复形成和反复破裂过程中,就会使某些局部地区的腐蚀加深,最后形成孔洞,而孔洞的存在又造成应力集中,更加速了孔洞表面的塑性变形和保护膜的破裂。这种拉应力与腐蚀介质的共同作用便形成了应力腐蚀裂纹。
3、应力腐蚀失效的防护措施
控制应力腐蚀失效的方法,从内因入手,合理选材,从外因入手,控制应力、控制介质或控制电位等。实际情况千变万化,可按实际情况具体使用。
(1)选用耐应力腐蚀材料
近年来发展了多种耐应力腐蚀的不锈钢,主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素体—奥氏体双相钢。其中,以铁素体—奥氏体双相钢的抗应力腐蚀能力最好。
(2)控制应力
在压力容器装配时,尽量减少应力集中,并使其与介质接触部分具有最小的残余应力,防止磕碰划伤,严格遵守焊接工艺规范。
(3)严格遵守操作规程
工艺操作、工艺条件对压力容器的腐蚀有巨大的影响。因此,必须严格控制原料成分、流速、介质温度、压力、pH值等工艺指标。在工艺条件允许的范围内添加缓蚀剂。铬镍不锈钢在溶解有氧的氯化物中使用时,应把氧的质量分数降低到1.0×10-6以下。实践证明,在含有氯离子质量分数为500.0×10-6的水中,只需加入质量分数为150.0×10-6的硝酸盐和质量分数为0.5×10-6亚硫酸钠混合物,就可以得到良好的效果。
(4)维修与管理
为保证压力容器长期安全运行,应严格执行有关压力容器方面的条例、法规,对在用压力容器中允许存在的缺陷必须进行复查,及时掌握其在运行中缺陷的发展情况,采取适当的措施,减少设备的腐蚀。
三、孔蚀失效及预防措施
1、孔蚀失效机理
在压力容器表面的局部地区,出现向深处腐蚀的小孔,其余地区不腐蚀或腐蚀轻微,这种腐蚀形态称为小孔腐蚀(也称点蚀)。点蚀一般在静止的介质中容易发生。具有自钝化特性的金属在含有氯离子的介质中,经常发生孔蚀。蚀孔通常沿着重力方向或横向方向发展,孔蚀一旦形成,具有深挖的动力,即向深处自动加速。含有氯离子的水溶液中,不锈钢表面的氧化膜便产生了溶解,其原因是由于氯离子能优先有选择地吸附在氧化膜上,把氧原子排掉,然后和氧化膜中的阳离子结合成可溶性氯化物,结果在基底金属上生成孔径为20μ~30μ小蚀坑,这些小蚀坑便是孔蚀核。在外加阳极极化条件下,只要介质中含有一定量的氯离子,便可能使蚀核发展成蚀孔。在自然条件下的腐蚀,含氯离子的介质中含有氧或阳离子氧或阳离子氧化剂时,能促使蚀核长大成蚀孔。氧化剂能促进阳极极化过程,使金属的腐蚀电位上升至孔蚀临界电位以上。蚀孔内的金属表面处于活化状态,电位较负,蚀孔外的金属表面处于钝化状态,电位较正,于是孔内和孔外构成一个活态———钝态微电偶腐蚀电池,电池具有大阴极小阳极面积比结构,阳极电流密度很大,蚀孔加深很快,孔外金属表面同时受到阴极保护,可继续维持钝化状态。
由于阴、阳两极彼此分离,二次腐蚀产物将在孔口形成,没有多大的保护作用。孔内介质相对于孔外介质呈滞流状态,溶解的金属阳离子不易往外扩散,溶解氧也不易扩散进来。由于孔内金属阳离子浓度增加,氯离子迁入以维持电中性,这样就使孔内形成金属氯化物的浓溶液,这种浓溶液可使孔内金属表面继续维持活化状态。又由于氯化物水解的结果,孔内介质酸度增加,使阳极溶解加快,蚀孔进一步发展,孔口介质的pH值逐渐升高,水中的可溶性盐将转化为沉淀物,结果锈层、垢层一起在孔口沉积形成一个闭塞电池。闭塞电池形成后,孔内、外物质交换更加困难,使孔内金属氯化物更加浓缩,氯化物水解使介质酸度进一步增加,酸度的增加将使阳极溶解速度进一步加快,蚀孔的高速度深化,可把金属断面蚀穿。这种由闭塞电路引起的孔内酸化从而加速腐蚀的作用称为自催化酸化作用。影响孔蚀的因素很多,金属或合金的性质、表面状态,介质的性质、pH值、温度等都是影响孔蚀的主要因素。大多数的孔蚀都是在含有氯离子或氯化物的介质中发生的。具有自钝化特性的金属,孔蚀的敏感性较高,钝化能力越强,则敏感性越高。实验表明,在阳极极化条件下,介质中主要含有氯离子便可以使金属发生孔蚀,而且随着氯离子浓度的增加,孔蚀电位下降,使孔蚀容易发生,尔后又使孔蚀加速。处于静止状态的介质比处于流动状态的介质能使孔蚀加快。介质的流速对孔蚀的减缓起双重作用,加大流速(仍处于层流状态),一方面有利于溶解氧向金属表面输送,使氧化膜容易形成;而另一方面又减少沉淀物在金属表面沉积的机会,从而减少产生孔蚀的机会。
2、防止孔蚀的措施
(1)在不锈钢中加入钼、氮、硅等元素或加入这些元素的同时提高铬含量,可获得性能良好的钢种。耐孔蚀不锈钢基本上可分为3类:铁素体不锈钢;铁素体—奥氏体双相钢;奥氏体不锈钢。设计时应优先选用耐孔蚀材料。
(2)降低氯离子在介质中的含量,操作时严防跑、冒、滴、漏等现象的发生。
(3)在工艺条件许可的情况下,可加入缓蚀剂。对缓蚀剂的要求是,增加钝化膜的稳定性或有利于受损钝化膜得以再钝化。例如,在10%的FeCl3溶液中加入3%的NaNO2,可长期防止1Cr18Ni9Ti钢的孔蚀。
(4)采用外加阴极电流保护,抑制孔蚀。氯离子对不锈钢制压力容器的腐蚀,对压力容器的安全性有很大的影响。即使是合理的设计、精确的制造避免或减少了容器本身的缺陷,但是,在长期使用中,由于各种错综复杂因素的联合作用,容器也会受到一定的腐蚀。虽然目前对防止氯离子对不锈钢腐蚀的方法还不十分完善,但掌握一些最基本的防护措施,对保证生产的正常进行,还是十分必要的。除此之外,还应严格按照操作规程操作,加强设备管理,做好容器的定期检验,以保证容器在合理的寿命期限内安全运行。
材料耐氯离子腐蚀能力不仅与氯离子浓度有关系,与介质温度也有关系。
四、腐蚀与不锈钢
1、应力腐蚀
应力腐蚀是指零件在拉应力和特定的化学介质联合作用下所产生的低应力脆性断裂现象。 应力腐蚀由残余或外加应力导致的应变和腐蚀联合作用产生的材料破坏过程。应力腐蚀导致材料的断裂称为应力腐蚀断裂。
它的发生一般有以下四个特征:
①一般存在拉应力,但实验发现压应力有时也会产生应力腐蚀。
②对于裂纹扩展速率,应力腐蚀存在临界KISCC,即临界应力强度因子要大于KISCC,裂纹才会扩展。
③一般应力腐蚀都属于脆性断裂。四、应力腐蚀的裂纹扩展速率一般为10-6~10-3mm/min,而且存在孕育期,扩展区和瞬段区三部分。
④应力腐蚀机理的机理一般认为有阳极溶解和氢致开裂。
2、晶间腐蚀
局部腐蚀的一种。沿着金属晶粒间的分界面向内部扩展的腐蚀。主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在。晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。而且金属表面往往仍是完好的,但不能经受敲击,所以是一种很危险的腐蚀。通常出现于黄铜、硬铝和一些含铬的合金钢中。不锈钢焊缝的晶间腐蚀是化学工厂的一个重大问题。
晶间腐蚀是沿着或紧靠金属的晶界发生腐蚀。腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,力学性能恶化。不锈钢、镍基合金、铝合金等材料都较易发生晶间腐蚀。
五、不锈钢的晶间腐蚀
不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。晶间腐蚀可以分别产生在焊接接头的热影响区、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀状腐蚀。
不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于12%。当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。因为室温时碳在奥氏体中的熔解度很。嘉0.02%~0.03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe)23C8等。但是由于铬的扩散速度较。床患跋蚓Ы缋┥,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数低到小于12%时,就形成所谓的“贫铬区”,在腐蚀介质作用下,贫铬区就会失去耐腐蚀能力,而产生晶间腐蚀。
含碳量超过0.03%的不稳定的奥氏体型不锈钢(不含钛或铌的牌号),如果热处理不当则在某些环境中易产生晶间腐蚀。这些钢在425-815℃之间加热时,或者缓慢冷却通过这个温度区间时,都会产生晶间腐蚀。这样的热处理造成碳化物在晶界沉淀(敏化作用),并且造成最邻近的区域铬贫化使得这些区域对腐蚀敏感。敏化作用也可出现在焊接时,在焊接热影响区造成其后的局部腐蚀。
最通用的检查不锈钢敏感性的方法是65%硝酸腐蚀试验方法。试验时将钢试样放入沸腾的65%硝酸溶液中连续48h为一个周期,共5个周期,每个周期测定重量损失。一般规定,5个试验周期的平均腐蚀率应不大于0.05mm/月。
奥氏体型不锈钢焊接结构的晶间腐蚀可用如下方法预防:
①使用低碳牌号00Cr19Ni10或00Cr17Ni14Mo2,或稳定的牌号0Cr18Ni11Ti或0Cr18Ni11Nb.使用这些牌号不锈钢可防止焊接时碳化物沉淀出造成有害影响的数量。
②如果面品结构件。芄辉诼薪腥却,则可在1040-1150℃进行热处理以溶解碳化铬,并且在425-815℃区间快速冷却以防止瑞沉淀。
焊接铁素体不锈钢在某些介质中也可能出现晶间腐蚀。这是当钢从925℃以上快速冷却时,碳化物或氧化物沉淀,金属晶格应变造成的,焊接后进行消除应力热处理可消除应力并恢复耐腐蚀性能。在1Cr17不锈钢中加入超过8倍碳含量的钛,通常可减少焊接钢结构在一些介质中的晶间腐蚀。然而加入钛在浓硝酸中不是有效的。
六、不锈钢的焊条选用要点
不锈钢主要用于耐腐蚀,但也用作耐热钢和低温钢。因此,在焊接不锈钢时,焊条的性能必须与不锈钢的用途相符。不锈钢焊条必须根据母材和工作条件(包括工作温度和接触介质等)来选用。
1、一般来说,焊条的选用可参照母材的材质,选用与母材成分相同或相近的焊条。
2、由于碳含量对不锈钢的抗腐蚀性能有很大的影响,因此,一般选用熔敷金属含碳量不高于母材的不锈钢焊条。
3、不锈钢的焊缝金属应保证力学性能。可通过焊接工艺评定进行验证。
4、对于在高温工作的耐热不锈钢(耐热钢),所选用的焊条主要应能满足焊缝金属的抗热裂性能和焊接接头的高温性能。
(1)对Cr/Ni≥1的耐热钢,一般均采用奥氏体-铁素体不锈钢焊条,以焊缝金属中含2-5%铁素体为宜。铁素体含量过低时,焊缝金属抗裂性差;若过高,则在高温长期使用或热处理时易形成σ脆化相,造成裂纹。
(2)对Cr/Ni<1的稳定型耐热钢,一般应在保证焊缝金属具有与母材化学成分大致相近的同时,增加焊缝金属中Mo、W、Mn等元素的含量,使得在保证焊缝金属热强性的同时,提高焊缝的抗裂性。
5、对于在各种腐蚀介质中工作的耐蚀不锈钢,则应按介质和工作温度来选择焊条,并保证其耐腐蚀性能(做焊接接头的腐蚀性能试验)。
(1)对于工作温度在300℃以上、有较强腐蚀性的介质,须采用含有Ti或Nb稳定化元素或超低碳不锈钢焊条。
(2)对于含有稀硫酸或盐酸的介质,常选用含Mo或含Mo和Cu的不锈钢焊条。
(3)腐蚀性弱或仅为避免锈蚀污染的设备,方可采用不含Ti或Nb的不锈钢焊条。 为保证焊缝金属的耐应力腐蚀能力,采用超合金化的焊材,即焊缝金属中的耐蚀合金元素(Cr、Mo、Ni等)含量高于母材。
6、对于在低温条件下工作的不锈钢,应保证焊接接头在使用温度的低温冲击韧性,故采用纯奥氏体焊条。
7、也可选用镍基合金焊条。如采用Mo达9%的镍基焊材焊接Mo6型超级奥氏体不锈钢。
8、焊条药皮类型的选择:
(1)由于双相奥氏体钢焊缝金属本身含有一定量的铁素体,具有良好的塑性和韧性,从焊缝金属抗裂性角度进行比较,碱性药皮与钛钙型药皮焊条的差别不像碳钢焊条那样显著。因此在实际应用中,从焊接工艺性能方面着眼较多。
(2)只有在结构刚性很大或焊缝金属抗裂性较差(如某些马氏体铬不锈钢、纯奥氏体组织的铬镍不锈钢等)时,才考虑选用药皮代号为15的碱性药皮不锈钢焊条(如A107、A407等)。
综上所述,不锈钢的焊接是有其独特特点的,不锈钢的焊接时焊条选用尤其值得注意,只有这样才能达到针对不同材料实施不同的焊接方法和不同材料的焊条,不锈钢焊条必须根据母材和工作条件(包括工作温度和接触介质等)来选用。这样才有可能能达到所预期的焊接质量。
工程分类
联系我们
秒速赛车
地址:盐城西环路78号
联系人:成勇
手机:13182191999 13961995908
电话:0515-88169588
传真:0515-89896999
邮编:224000
邮箱:69951353@qq.com

秒速赛车/企业简介/新闻资讯/工程展示/经营范围/资质证书/在线留言/联系我们/